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Abstract—In this paper, a new systematic approach to hetero-
junction bipolar transistors (HBT’s) characterization and mod-
eling is presented. The proposed approach is based on a new
compact HBT nonlinear circuit model which accounts for both
self-heating and the temperature dependence effects. The model’s
parameters are extracted from measured dec-IV characteristics
and S-parameters. The power characteristics of the device are
then predicted using the extracted model without any further
optimizations. The same model is also used for intermodulation
distortion analysis. The model has been implemented in a number
of commercial nonlinear simulators and in an in-house computer
code. Results are presented for two different size devices showing
good agreement with measurements.

NOMENCLATURE

Iy Base-emitter current

Vee Collector-emitter voltage.

I Base-emitter saturation current.

a=1/(nV,) Diode fitting parameter.

1. Collector current X7 to X1p; collec-
tor current fitting parameters.

Iy, Base reference current.

Iy, Normalized base current.

T, Reference temperature.

T Analysis temperature.

Che Intrinsic base-emitter capacitance.

Che Intrinsic feedback base-collector ca-
pacitance.

a1, az Fitting parameters for the bias-
dependent base-emitter capacitance,
Che.

b1, ba Fitting parameters for the bias-
dependent base-collector capaci-
tance, Cye.

Cpbe Extrinsic base-collector capacitance.

Ry, R., R. Contact resistance for base, collec-

tor, and emitter.
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Ly, L., L. Leading pads inductances for base,
collector, and emitter.
Cpb, Cpe Leading pads capacitances for base

and collector.

Lo, Cro, Leo, Coo Packaging parasitics.

I. INTRODUCTION

HE HETEROJUNCTION bipolar transistor (HBT) de-
Tvices are becoming increasingly more popular in mi-
crowave and millimeter-wave power applications. These de-
vices are attractive for their power density capability, linearity,
and high cut-off and oscillation frequencies, which have been
dramatically improved in recent years [1]-[3]. This progress
has been made possible with the rapid improvements in
material quality and epitaxial layer growth techniques such as
the molecular beam epitaxy (MBE) and the metallic organic
chemical vapor deposition (MOCVD) [4]. However, these
devices still have power limitation which are mainly attributed
to the self-heating effects [5], [6] and to collector junction
breakdown [7]. In general, thermal effects are significant in
high power HBT’s for which the dc-IV curves show strong
negative slopes when biased with a high base current. It was
recently reported [8] that the performance of HBT’s is also
affected by the environment temperature. In general, these
effects are seen in a decrease of the maximum collector current
as the surrounding temperature is increased.

To efficiently use HBT devices in the CAD of microwave
and millimeter-wave active circuits, a compact nonlinear
model, including the above effects and having a reasonable
number of parameters, is needed. It is also desirable to have
the same model be valid in dc, small-signal, and large-
signal operating regimes. Presently, most of the models
used for the analysis of the characteristics of such devices
are modified versions of the Gummel-Poon (GP), model
[8]-[10] which was traditionally used for silicon homojunction
bipolar transistors (Si-BJTs). These GP-based circuit models
do not account for the self-heating effects present in HBT’s
nor do they account for external temperature variation.
Although remedies to this have been suggested, [11], [12]
for self-heating by adding thermal circuits and [8], [11] for
external temperature variation by writing explicit temperature
dependence formulas for the parameters, the suggested
solutions come at considerable costs in the model’s complexity
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and number of parameters, which in turn lead to difficulties in
parameter extraction. Even with the mentioned modifications,
the applicability of these models to high power devices is
still questionable. Furthermore. these models often require
two separate equivalent circuits [13], [14]: one for dc and
large signal analyses, and a second, a linear circuit with a
transconductance (g,,) and an input conductance (¢p.), for
small signal analysis at specific bias points.

In the present work, a new single nonlinear HBT model
is introduced. A systematic and consistent approach for the
analysis of HBT behavior under dc, small-signal, and large-
signal operations is then developed using this model. The
proposed model accounts for both self-heating effects and tem-
perature dependence using a compact and explicit nonlinear
equation which relates the collector current to the base current
and to the collector-emitter voltage, which are the actual
biasing quantitics. The modeling procedure starts with the de-
IV characteristics from which the parameters of the nonlinear
model are extracted. The S-parameter measurements serve
then to extract the remaining extrinsic and bias dependent
parameters. Once these two steps are completed, any type of
analysis can be performed without the need for any additional
optimizations.

The proposed model was implemented in nonlinear sim-
ulators such as SPICE [15] and HP-MDS [16]. Using the
measured data for two HBT devices, the model was validated
and good agreement was found in all investigated regimes
of operation. In particular, harmonic-balance simulations were
performed to calculate the power, gain, and power-added effi-
ciency characteristics as well as the intermodulation distortion
of the larger-size device.

II. THE HBT EQUIVALENT CIRCUIT MODEL

The purpose of this work is to develop a single equivalent
circuit model for HBT’s that would be valid in all operating
regimes. The proposed nonlinear circuit model for low power
and high power HBT devices is shown in Fig. 1. The intrinsic
device elements are shown within the dashed outline of Fig. 1.
In the forward mode of operation, which is the mode of
interest for HBT's in microwave applications, the two main
nonlinearities of the device are the base-emitter diode, Iy,
and the collector current source, .. The first is modeled by a
physics-based diode equation of the form

Ipe = I(e* " — 1) )
where V3. is the applied base-emitter voltage (the remaining
parameters are defined in the nomenclature section). The sec-
ond nonlinearity, I.. is modeled by a new empirical equation
different from existing models. Since these existing models
are modified forms of the Gummel-Poon model [8]-[12]. they
represent the collector current as a function of the base-emitter
voltage, V.. and the base-collector voltage, Vi.. (i.e., I, =
T (Vee, Vi), which are not the direct biasing variables used in
the device’s experimental characterization. It is therefore more
appropriate to derive a collector current model as a function of
the biasing base current, [}, and the biasing collector-emitter
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Fig. 1. The HBT nonlinear equivalent circuit.

voltage, Vi, (ie., I, = f(I. Vi)). The describing function
of such model is given by the empirical equation

IC(Ib7 vrce)
_ - Sinh(Xy + XoVe)
T (X + X, V)

. [0 (Zr) 1]
: {Sin}l(ﬁf— + X, Tanh(XsI2,)V, > }

IX3 4 5ipn ce

bn

(2)

where
X7 Xs
X, = Xp+ 1
? Ibnvce * \Y [hn

and I, is the normalized base current

I
I bn Ibo .

Iy, The reference base current, the lowest
base current in the DC characteristics
where the self-heating effects are
negligible.

Iy The base current (independent biasing
variable).

Ve The collector-emitter voltage
(independent biasing variable).

X1, X The model’s parameter to be extracted.

To The reference temperature in Kelvin (at
which X1,.... X9 are extracted).

T The analysis temperature in Kelvin.

The details of the derivation of the model (without tem-
perature dependence) are reported in {17] and [18]. The
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parameter extraction procedure is based on the optimization
of the 10-parameter model of (2) against the measured dc-IV
characteristics of the device at different ambient temperature
settings. Equation (2) is numerically stable in dc and small-
signal simulations. However, under large-signal excitations,
i.e., in harmonic balance simulations, a more appropriate form
that insures numerical stability is the following

Ic(Ibv ‘/ce)
Sinh(Xe) + Cosh(Xg)Tanh(X,Vee)
Cosh(Xy) + Sinh(Xg)Tanh(X,V,.)

. [0 (2722 -1
. {Sinh (ITZ + X Tanh(Xg,I,?n)Vce) }

bn
3)

This compact model accurately accounts for both self-heating
and ambient temperature effects. The self-heating effects are
implicitly accounted for in the model (in the second factor
of the right hand term of (2) or (3)) while the tempera-
ture dependence is explicitly represented by the power term
o (B2) - 1.

The remaining intrinsic elements are the input base-emitter
capacitance, Cj., and the feedback base-collector capacitance,
Cpe. Both of these elements are bias dependent {19]. Their
analytical expressions, as functions of I; and V., respectively,
are described in Section IV. '

The extrinsic device elements are shown outside the dashed
box of Fig. 1. These elements are bias independent and rep-
resent the contact (R, R., and R.) and the electrodes
leading-pads parasitic (Ly, L., L., Cpp, Cpe, and Chpp).
The parameter extraction procedure for all of the presented
equivalent circuit elements is outlined below.

The above-derived model is suitable for implementation
in nonlinear simulators. It was successfully implemented in
SPICE [17], HP-MDS and in an in-house computer program
with comparable results.

= 1

III. DC CHARACTERISTICS AND ANALYSIS

Two different-size GaAs HBT devices were characterized
to assess the accuracy of the proposed nonlinear model. The
small-size HBT is a single 15 ym? emitter-finger device (HBT-
1), while the larger one is a 750 um? emitter device (HBT-2).
For dc modeling, the collector-emitter and the base-emitter I-
V characteristics of the devices were measured. Table I gives
some electrical properties of both devices.

The dc measured extrinsic voltages, V;, and V/, shown
in Fig. 1, are related to the intrinsic voltages, V4. and V.
across the base-emitter junction and collector-emitter, respec-
tively, by means of the series resistances Ry, R , and R, as
follows

ve = Vbe + bRy + (b + I)R] = 0 @)

Vie = [Vee + IR + (I + I.)R.] = 0. (5)

The dc values of the resistances R, R., and R. are de-
termined from a least square minimization using (4) and

TABLE I
SoME ELECTRICAL CHARACTERISTICS OF THE INVESTIGATED HBT DEVICES;
HBT-1: EMITTER AREA: 15 pm?; HBT-2: EMITTER AREA: 750 pm?

CHARACTERISTICS HBT-1 HBT-2
Total emitter area: AR 15 pm? 750 wm?2
Current density: J 3.5x10% AJem2 4x10% Alem2
DC current gain: b 38-41 50-55
Cut-off frequency: fr 28.5 GHz 8 GHz
Oscill. frequency: fiax 45 GHz 12 GHz
TABLE II

MODEL'S PARAMETERS OF THE NONLINEAR COLLECTOR CURRENT AND
BASED-EMITTER DIODE OF THE DEVICES HBT-1 AND HBT-2

Parameters HBT-1 HBT-2
Ry 44.3 Q 4.95Q
R, 8.25Q 0.97 Q
Re 5580 091 Q
X1 0.000146 0.00106
X5 0.926 1.3254
X3 1.05 1.2073
X4 -0.0028 0.008055
X5 792.2 0.4424
X -0.748 0.5332
X7 . -3.54 -2.1493
X8 10.3 10.0516
Xo -2.37 -2.0165
X190 0.434 0.614
o 10.34 6.51
I 4.26x10-12 7.82x10-8

(5) at different bias points. Their values are found to be
almost bias independent and are listed in Table II for both
devices. These values are used as initial guesses in fitting
the model to the measured S-parameters as described in
the next section. The measured Ip.-Vi. characteristics are
used to extract the base-emitter diode parameters, [, and
o, while the parameters of the nonlinear collector-emitter
current source, X; to Xjo, were extracted using the I,.-
V.. characteristics. Since the collector current model (2) is
temperature dependent, its parameters were extracted in two
steps: first, Xy, -- -, Xg are obtained from a reference temper-
ature measurements (in this case, T, = 27°C), second Xiq
is extracted using a nonreference temperature measurements
(in this case, 10°C) with Xj,---, Xy fixed. This parameter
extraction was easily performed by fitting (1) and (2) to the
measured [,.-Vp. characteristics, respectively. The resulting
parameters for the two devices are listed in Table II. Figs. 2
and 3 compare the room temperature measured and simulated
dc-1V characteristics of the small device (HBT-1) and the large
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Fig. 2. Simulated and measured dc-IV characteristics of the HBT-1 device.
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Fig. 3. Simulated and measured dc-IV characteristics of the HBT-2 device.

device (HBT-2), respectively. One can see that the model’s
results are in good agreement with the measured data in all
operating regions of the devices, and the strong negative slopes
in the curves of HBT-2 are accurately represented by the
model. ' ‘

To study the validity of the model at different ambient
temperatures, the measured dc characteristics of HBT-2 at
different temperatures were compared to the simulated results
using the parameters of Table II. The results are shown in
Fig. 4 for a temperature of 50°C and show good accuracy.
Similar results were obtained at other temperatures.

IV. SMALL-SIGNAL MODELING AND ANALYSIS

The S-parameters of both devices (HBT-1 and HBT-2)
were measured at various bias points concentrated mainly in
the forward active region (base-emitter junction is forward
biased, and base-collector junction reverse biased), which is
of primary importance for microwave active circuits and is

TABLE III
EXTRINSIC AND INTRINSIC PARAMETERS OF THE MODEL FOR HBT-1. AND HBT-2.
Parameters HBT-1 HBT-2

Ly 0.043 nH 0.691 nH
L. 0.061 nH ' 0.091 nH
L. 0.034 nH 0.038 nH
Rp 472 Q 5.198
Re 1.8 Q 10.2
Re 6.7 Q 1.5
Cpbe 0.021 pF 0.71 pF
Cob 0.038 pF -
Cpe 0.023 pF -

aj 0.12 0.06
a 9.25 0.255
by 0.1 0.01
by 52.3 4.9
Cho - 0.102 pF
Ceo ' - 0.216 pF
Lbo - 0.01 nH
Leo - 0.298 nH

associated with maximum efficiency of operation. For small-
signal modeling, the same HBT equivalent circuit of Fig. 1
is used. One aspect of the consistency of the proposed model
resides in the fact that the parameters of the collector current
(2) and those of the diode (1) obtained from dc measurements
are fixed. The remaining extrinsic elements are then deter-
mined by fitting the calculated to the measured S-parameters at
different bias points using a gradient optimization procedure.
As expected, the extrinsic parasitic elements were found to
exhibit little bias dependence. The results of this optimization
are summarized in Table III for both devices. In addition,
from multibias S-parameter fittings, the bias-dependence of
the intrinsic capacitances, Ct. and Cy., which is of the form

Che = a1 + agly pF (©)

and

1

Coe = 77—
b7 (by + by Vee)

pF (N

is obtained, where the base current Ip, is in mA and the
collector-emitter voltage, V., is in Volts. The parameters, a1,
a2, by, and bs, for these capacitances, obtained after curve
fitting, are listed in Table III. Based on these results, Cj, is
found to be strongly dependent on the base current, I, while
Cp. has a hyperbolic dependence on V.. which is consistent
with the explanations of [15] stating that (. increases at



HAIL et al.: SYSTEMATIC DC/SMALL-SIGNAL/LARGE-SIGNAL ANALYSIS OF HETEROJUNCTION BIPOLAR TRANSISTORS 237

T=50 °C (323 °K)

300
F : ¥ Measurements I
250 - : ol . . i
b % x i Simulation §
S 200} ‘ B
2 150
5t
‘g L
g 1000
— b
8 r
8 sofp
S -
0 A
-50 : i H !
0 1 2 3 4 5 6 7
Collector Voltage Vee (V)

Fig. 4. . Predicted and measured dc-IV characteristics of HBT-2 at T' = 50°C
(323° K).

m Sll m e Slz

1.0E+09 FREQ
1.0E+09 FREQ

30.08+09 2
30,0809 B

1.0E+09 FREQ
1.0B+09 FREQ

30.0E+09 4
30.02+09B

1.0E+03 FREQ
1.08+09 FREQ

30.0E+09A
30.0E+09 B

1.0E+09 FREQ
1.0E+09 FREQ

30.0E+99A |-
30.0E+09 B

Fig. 5. Simulated and measured S parameters of HBT-1; bias: [ = 120
HA, Vce = 4.5 V. :

low collector-emitter voltages due to the base-charge increase
caused by the HBT beginning to enter the saturation region.
Using the model parameters derived from the dc and small-
signal measurements as described above, the S-parameters of
HBT-1 and HBT-2 were obtained by simulation at different
bias points over the frequency ranges of 1 to 30 GHz and
1 to 8 GHz, respectively. The HBT-2 packaged device were
measured up to 8 Ghz due to the limited operational frequency
range of the in house made fixture. The results are presented
in Figs. 5 and 6 and show excellent agreement between mea-
surement and simulation at the bias point chosen with similar
agreement at other biasing conditions. It should be noted that
since HBT-2 is a packaged device, parasitic elements were
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Fig. 6. Simulated and measured S parameters of HBT-2; bias: I;, = 4.5
mA, Vee = 5.0 V. )
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Fig. 7. Equivalent model of the packaged device HBT-2.

added to the model of Fig. 1 as shown in Fig. 7. The extracted
values of these parasitics are listed in Table III.

V. POWER CHARACTERISTICS AND
HARMONIC BALANCE ANALYSIS

The output powers at the fundamental frequency and its
higher order harmonics versus input power characteristics
were measured using the HP microwave transition analyzer
(HP70004A MTA). The measurements were performed on
the packaged large-size device, HBT-2, at the fundamental
frequency of 2 GHz. The output versus input power charac-
teristics, for 50 € source and 50 €2 load, were measured at
various dc bias points. The large-signal characteristics of the
device were simulated using the nonlinear equivalent circuit
of Fig. 7, with (3), implemented in HP-MDS without any
additional modifications or optimizations, which is another
aspect of the consistency of the proposed model. The harmonic
balance simulation technique [20], [21] was used to calculate
the device’s output power and gain characteristics as functions
of the input power at the corresponding bias points. Three
harmonics were considered and were found to be sufficient

for accurate calculations.
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Vee = 5.0 V.

Fig. 8 shows the measured and calculated power and gain
characteristics at two bias points for HBT-2. The first bias
point (I, = 4.5 mA, V.. = 3 V) corresponds to class A
operation while the second point (/; = 0.6 mA, V. = 3
V) corresponds to class AB operation. As expected, the
compression point of the device, operating in class AB, occurs
at an input power level lower than in class A operation. A
comparison between the simulated and the measured output
power of the harmonics when the device is biased in class
A operation is shown in Fig. 9. It is clear that the model
accurately predicts the three output harmonic power levels
over 20 dB dynamic range. The noise in the measured P,(3f,)
at low input power levels may be due to the limited detection
sensitivity of the MTA at low power levels. With 50 €2
terminations, the effects of the device’s nonlinearities are
minimal. This can be seen in Fig. 9 where the second and third
harmonic levels are at least 15 dB below the fundamental level:
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Fig. 11. Measured and simulated power-added efficiency versus input
power; bias: I, = 4.5 mA, Vee = 5.0 V.

This can also be seen in output voltage waveforms of Fig. 10,
where the saturation starts to take place at Py, = 10 dBm.
To further assess the accuracy of the model, the power-
added efficiency (PAE) is computed. The PAE of the device
is defined as the ratio of the additional power provided by the

“device to the dissipated dc power, Py, [13] .

Pr—P

PAE = B (8)
where Py, is the power absorbed by the load and F;, is the RF
input power. This characteristic was calculated using the har-
monic balance simulation results. In particular, the dc power is
calculated using the dc components of the collector cutrent and
the collector-emitter voltage spectra (Pg. = V..l.). Fig. 11
shows the measured and calculated PAE of the device versus
the input power under 50 € terminations. Good agreement
between measurement and simulation is once again obtained
confirming the validity and the robustness of the proposed
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model which accurately predicts the dc behavior even if a
large-signal RF drive is present at the input of the device.
The consistency of the model is further tested via in-
termodulation distortion analysis which is a good test for
device’s linearity, an important requirement for multicarrier
or time varying signal applications. This was accomplished
by examining the ratio of the carrier level to the third-order
product level (C/I3) under two-tone excitation. This test was
carried out at carrier frequencies of 2.0 and 2.005 GHz with
equal amplitudes. The two-tone simulation results, in class A
operation and with 50 €2 terminations are illustrated in Figs. 12
and 13. Fig. 12 shows the single carrier output power and the
third-order intermodulation distortion (Pivs = Pp(2f1 + f2))
as functions of the input power per tone. As observed in [22],
the third-order intermodulation distortion increases faster than
a 3:1 slope at higher power levels. This is due to the fact that
the transistor is approaching the 1-dB compression point where
the device’s large-signal nonlinearities start to take effect.

MEASUREMENTS

DC and multi-bias S-parameters

\ )

DC S-parameters

Extraction of extrinsic elements
and Cbe(lb), Chc(Vee)
Fig. 1 (chip devices)
Fig. 7 {(packaged devices}

Parameter extraction
eqs. (1) & (2

REMR A B

|

Resulting Nonlinear HBT Model
NLHBTM

| __loput

(@)

DC
Analysis

Small-signal
analysis

Powe, gain
and phase distortion
calculations

Harmonic-
Balance
Simulations

Intermodulation
analysis

(b)

Fig. 14. Phases of the modeling, parameter extraction and analysis for the
new model. (a) Phase I: Modeling and parameter extraction. (b) Phase II:
Possible analysis options.

Multi-harmonic
load-pull simulations

Fig. 13 shows the C/I3 level and the gain as functions of the
single carrier output power. One can see that a good C/Iz of
—25 dBc is obtained at the device’s 1 dB compression point
while a C/I3 better than —35 dBc is attainable at 2 dB backoff
from the Pp4p compression point. This confirms the higher
linearity achievable with HBT’s compared to MESFET’s [22].

VI. SUMMARY

The proposed model and the systematic approach for its
parameter extraction and its application to dc, small-signal,
and large-signal single and multitone analysis can be sum-
marized in the flow-chart format of Fig. 14. Starting with
the measured dc-IV curves, the parameters of the nonlinear
elements of (1) and (2) are extracted. The results of this first
step are combined, unmodified, with the multibias S-parameter
measurements for the extraction of the remaining equivalent
circuit elements. At the end of this step, i.e., end of phase I of
Fig. 14(a), the HBT model is complete. The model can then
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be used for simulation under any operating mode as shown in
Fig. 14(b) without any modifications.

VI1I. CONCLUSION

The dc, small-signal, and large-signal characteristics of
HBT’s were investigated using a new consistent nonlinear
model. The model accounts for the self-heating effects as
well as the environmental temperature dependence. In addition
to accuracy, the model offers the advantage that it is a
function of the independent biasing variables (I, and V,.),
making it appropriate for direct comparison with measured
data. The parameters of the equivalent circuit of the model
were extracted from measured dc and S-parameters. The
proposed model was easily implemented in HP-MDS as well
as a personal computer code. The simulations performed
using the nonlinear model have provided computed dc, small-
signal, and large-signal characteristics which are in good
agreement with the measured results for the different size
HBT’s investigated. The power-saturation mechanisms have
been shown to be dependent on the class of operation and
the termination conditions. Good HBT linearity, compared to
MESFET’s, has been observed via intermodulation distortion
analysis showing low third-order intermodulation distortion
power levels and, consequently, very low C/I3 levels.
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